Cyber-physical systems integrate computational components (information processing) with physical processes, which interact through a network. Technological advances in the ‘Internet of Things’, ‘Robotics’, and ‘Autonomous vehicles’ are the foundation for making cyber-physical systems possible, and today there are examples of successful cyber-physical systems everywhere… from driver less trains, to smart buildings, to household appliances and everyday items such as cleaning robots, wearable fitness devices or electric bikes.
Cyber-physical systems provide an opportunity to positively improve our quality of life in many domains, ranging from transportation, to healthcare, farming, manufacturing, smart grids, and everyday living. A key challenge, however, is the need for engineering innovation to work in coordination with information technology innovation, as the physical meets the digital. Developing common languages and other commonalities in this pluri-disciplinary field will facilitate future development of these systems. In addition, as with many technological advances, unintended consequences of integrating cyber-physical systems are likely to emerge in future, and it is therefore important to think ahead about the ethics surrounding these systems and how future regulation can limit risks related to safety, responsibility, liability, privacy and more.
Technology trends
Robotics technology is developing quickly and is already able to replace human labour for a range of tasks. Vast improvements in the capabilities of robots are expected to continue and this will lead to changes across many industries[1,2,3]:
- Healthcare will benefit from the increased use of robots in basic medicine and diagnostics, reducing costs for individuals and the economic burden of publicly funded health services.[1]
- Robots will continue to take over human labour in manufacturing, displacing workers as a result – the pace of technological development may create extreme pressures on education and training systems to support the adaptation of workforces (see ‘Effects of automation’).[1,4] However, robotics is also expected to lead to new types of work[5], as large numbers of robotics technicians will be required to maintain these ‘fleets of robots’ and the data generated and collected by robots will be immense, leading to growing demand for data scientists to make use ofit.[3]
- The agricultural sector will increasingly use robots for manual tasks such as seeding, weeding, and harvesting, with sensors improving in their ability to identify ripe produce, harvest plants and detect disease.[3]
- A range of military applications is anticipated, raising increasingly complex ethical questions. If terrorist organizations and non-state armed groups have access to this technology, it will increase the complexity of conflict.[6]
- The automotive and transportation sector will move towards increasing production and use of ‘Autonomous vehicles’, made possible by advances in robotics and other emerging technologies (see ‘5G’).[4] The carsharing company Uber, for example, is currently expanding its driverless-car programme. This may lead to a reduction in private car ownership and use.[5]
As robots increase in power, their applications are likely to grow. Computing for robots is now possible in the Cloud, increasing their processing power and speed.[7] Advances in sensors, speech-recognition technology and computer vision will all contribute to more advanced robotics products, including robots that are able to operate in uncontrolled settings – known as ‘open-world autonomy’.[3]
Related trends
News stories
- Robotique — Méthodes d'essai du robot ambulant RACA de type exosquelette
- Robotique — Applications collaboratives — Méthodes d'essai pour mesurer les forces et les pressions dans les contacts homme-robot
- Robotique — Vocabulaire
- ISO 10218-1 [Actuellement en cours d'élaboration]Robotique — Exigences de sécuritéPartie 1: Robots industriels
- ISO 10218-2 [Actuellement en cours d'élaboration]Robotique — Exigences de sécuritéPartie 2: Applications robotisées industrielles et cellules robotisées
- Robots manipulateurs industriels — Systèmes de changement automatique de terminal — Vocabulaire
- ISO/DIS 13482 [Actuellement en cours d'élaboration]Robotique — Exigences de sécurité pour les robots de service
- Robots et dispositifs robotiques — Robots coopératifs
- ISO/CD 21423 [Actuellement en cours d'élaboration]-
- Robotique - Services rendus par les robots de service — Exigences relatives aux systèmes de gestion de la sécurité
Autonomous vehicle technology is not a one-size-fits-all concept, as there are different considerations and implications for road, ship, or rail transport. The degree of automation can vary as well, and classified in ranges from Level 0 (fully manual) to Level 5 (driverless). The following discussion explores autonomous vehicles as a high-level trend only, where autonomous vehicles are understood as all forms of driverless transport systems.
Autonomous vehicles are already used in industrial settings, in some public transport systems (e.g. driverless trains), and automation technology is increasingly integrated in our cars (e.g. cruise control, self-parking technology or traffic jam pilot).[8,9] While the autonomous vehicle market is growing as a whole, with an expected CAGR of over 39% from 2019 to 2026, the deployment of fully automated (driverless) vehicles on public roads is still years away.[10,11] The impact of more autonomous vehicles is likely to be double-sided. They may eliminate the need for drivers of vehicles of all kinds: trucks, taxis, and public transport vehicles, representing a significant labour force impact in the coming decades.[1] At the same time, they may create opportunities for more efficient transport of goods and people to regional areas.[9] Indeed, a significant, expected benefit to society is improved population mobility due to use of autonomous vehicles for public transport, particularly in rural areas.[12]
Existing data on use of autonomous vehicles suggests they can reduce both safety incidents and fuel expenditure.[8] Autonomous vehicles are expected to make trade corridors significantly more efficient and, when combined with the energy efficiency of electric vehicles, increase the competitiveness of road transport against rail for the delivery of goods.[9]
Technology is also developing for autonomous vehicles beyond the road. Future innovations could include autonomous cargo ships and planes leading to more efficient supply chains in international trade.[8]
Related trends
News stories
- Sécurité routière — Recommandations relatives aux considérations éthiques en matière de sécurité pour les véhicules autonomes
- ISO/AWI 20682 [Actuellement en cours d'élaboration]Autonomous Underwater Vehicles — Risk and Reliability
- Navires et technologie marine — Vocabulaire relatif aux systèmes de navires autonomes
- Véhicules routiers — Surveillance et contrôle des objets de test pour l’évaluation de la sécurité active et des véhicules automatisés/autonomes — Exigences fonctionnelles, caractéristiques et protocole de communication
- Tracteurs et matériels agricoles — Sécurité des machines partiellement automatisées, semi-autonomes et autonomesPartie 1: Principes de conception des machines et vocabulaire
- Tracteurs et matériels agricoles — Sécurité des machines partiellement automatisées, semi-autonomes et autonomesPartie 2: Principes de conception pour la protection contre les obstacles
- Tracteurs et matériels agricoles — Sécurité des machines partiellement automatisées, semi-autonomes et autonomesPartie 3: Zones de fonctionnement autonome
- Tracteurs et matériels agricoles — Sécurité des machines partiellement automatisées, semi-autonomes et autonomesPartie 4: Méthodes de vérification et principes de validation
- Engins de terrassement et exploitation minière — Sécurité de système de machine autonome et semi-autonome
- Systèmes intelligents de transport — Service de système de conduite automatisée à vitesse réduite (CAVR)Partie 1: Rôle général et modèle fonctionnel
- Systèmes de transport intelligents — Service de système d'intégration de la mobilité pour la conduite automatisée à basse vitesse (LSAD)Partie 2: Architecture globale
- Systèmes de transport intelligents — Systèmes de stationnement partiellement automatisés (PAPS) — Exigences de performance et procédures d'essai
- Systèmes de transport intelligents — Essais de performance pour les fonctions de connectivité et de sécurité des bus à conduite automatisée dans les transports publicsPartie 1: Cadre général
- Systèmes de transport intelligents — Essais de performance pour les fonctions de connectivité et de sécurité des bus à conduite automatisée dans les transports publicsPartie 3: Cadre de service et cas d'usage
- Systèmes de transport intelligents — Spécification de données dynamiques et de bases de données cartographiques pour les applications de système de conduite connectées et automatiséesPartie 1: Architecture et modèle logique de données pour l'harmonisation des données cartographiques statiques
- ISO/TS 22726-2 [Actuellement en cours d'élaboration]Systèmes de transport intelligents — Spécification de données dynamiques et de bases de données cartographiques pour les applications de système de conduite connectées et automatiséesPartie 2: Modèle de données logique des données dynamiques
- Systèmes de transport intelligents — Systèmes de conduite automatisée à basse vitesse pour des itinéraires prédéfinis (LSAD) — Exigences de performance, exigences du système et procédures de test de performance
- Systèmes de transport intelligents — Systèmes de parking avec voiturier automatisé (AVPS)Partie 1: Cadre du système, exigences relatives à la conduite automatisée et à l'interface de communication
- Systèmes de transport intelligents — Systèmes de parking avec voiturier automatisé (AVPS)Partie 2: Intégration de la sécurité pour les AVP de type 3
- Infrastructures urbaines intelligentes — Recommandations relatives au transport intelligent par véhicules électriques, connectés et autonomes et application aux services de transport de passagers à la demande avec des véhicules partagés
- Infrastructures urbaines intelligentes — Transport intelligent par véhicules autonomes sur la voie publique
The Internet of Things (IoT) refers to a system of interconnected devices embedded with software, sensors, and other technologies (such as digital twin, cloud computing, big data and ‘Artificial intelligence’), which allows them to exchange data over the Internet for the purpose of improving functionality and monitoring. IoT systems are software and data-intensive, as well as network centric. They can be quite complex, ranging from simple architecture to systems which are multi-tiered, distributed, and ‘Cyber-physical systems’. IoT systems are key enablers of ‘smart everything’, including smart homes and buildings, ‘Smart manufacturing’, ‘Smart cities’, and smart farming, but also wearable technologies, medical devices, and vehicles.[11] Currently, there are twice as many devices connected to the Internet as people, and IoT connections are still expected grow at 17% per year.[4,11] Experts predict that, by 2025, an average Internet user will be interacting with IoT devices nearly 4,900 times each day.[4]
This increased device connectivity will result in massive amounts of data, creating growing needs for data storage, analytical capacity, and data protection. The data gathered by these devices can contribute to improved strategies to reduce poverty in some contexts, as well as increased sustainability and environmental protection. However, the IoT could also pose risks, if data are not sufficiently protected, or if it is used for unethical purposes.[2]
The rollout of emerging communications and networking technologies such as ‘5G‘ and satellite IoT will increase the reach, efficiency, and capacity of IoT devices, further growing the demand for these products.[3,11] For example, improved IoT technology and increased connectivity are already fostering the development of remote surgery technologies, which will “bring previously inaccessible healthcare to worldwide populations.”[3]
Related trends
News stories
- Internet of Things (IoT) and digital twin — Vocabulary
- Internet des objets (IoT) — Interopérabilité des systèmes IoTPartie 1: Cadre méthodologique
- Internet des objets (IoT) — Interopérabilité des systèmes IoTPartie 2: Interopérabilité de transport
- Internet des objets (IoT) — Interopérabilité des systèmes IoTPartie 3: Interopérabilité sémantique
- Internet of things (IoT) — Interoperability for IoT systemsPart 4: Syntactic interoperability
- Technologies de l'information — Cas d'utilisation de l'Internet des objets (IoT)
- Internet of Things (IoT) — Reference architecture
- Information technology — Internet of things — Methodology for trustworthiness of IoT system/service
- Internet of Things (IoT) — Trustworthiness principles
- Internet of Things (IoT) — Compatibility requirements and model for devices within industrial IoT systems
- Internet of Things (IoT) — Real-time IoT framework
- Internet of Things (IoT) — Generic trust anchor application programming interface for industrial IoT devices
- Internet of Things (IoT) — IoT applications for electronic label system (ELS)
- ISO/IEC CD 30177 [Actuellement en cours d'élaboration]Internet of Things (IoT) — Underwater network management system (U-NMS) interworking
- ISO/IEC CD 30178 [Actuellement en cours d'élaboration]Internet of Things (IoT) — Data format, value and coding
- Internet of Things (IoT) — Overview and general requirements of IoT system for ecological environment monitoring
- ISO/IEC DIS 30180 [Actuellement en cours d'élaboration]Internet of Things (IoT) — Functional requirements to determine the status of self-quarantine through Internet of Things data interfaces
- Internet of Things (IoT) — Functional architecture for resource identifier interoperability
- Internet of Things (IoT) — Autonomous IoT object identification in connected home — Requirements and framework
- ISO/IEC CD 30187 [Actuellement en cours d'élaboration]Internet of Things (IoT) — Evaluation indicators for IoT systems
- ISO/IEC AWI 30189-1 [Actuellement en cours d'élaboration]Internet of Things (IoT) — IoT-based management of tangible cultural heritage assetsPart 1: Framework
- Internet of things (IoT) and digital twin — Best practices for use case projects
- ISO/IEC AWI 30195 [Actuellement en cours d'élaboration]Internet of Things (IoT) — IoT applications for long-distance oil and gas pipeline
- ISO/IEC AWI 30196 [Actuellement en cours d'élaboration]Internet of Things (IoT) — IoT applications for natural gas distribution system
- ISO/IEC FDIS 27701 [Actuellement en cours d'élaboration]Sécurité de l'information, cybersécurité et protection de la vie privée — Systèmes de management de la protection de la vie privée — Exigences et recommandations
- ISO/IEC DIS 23093-1 [Actuellement en cours d'élaboration]Technologies de l'information — Internet des objets mediaPartie 1: Architecture
- ISO/IEC DIS 23093-2 [Actuellement en cours d'élaboration]Technologies de l'information — Internet des objets mediaPartie 2: API pour la découverte et la communication
- ISO/IEC DIS 23093-3 [Actuellement en cours d'élaboration]Technologies de l'information — Internet des objets mediaPartie 3: API et formats des données
- Technologie de l'information — Internet des objets mediaPartie 4: Logiciels de référence et conformité
- ISO/IEC FDIS 23093-5 [Actuellement en cours d'élaboration]Technologies de l'information — Internet des objets mediaPartie 5: Collaboration autonome dans l'IoMT
- ISO/IEC DIS 23093-6 [Actuellement en cours d'élaboration]Information technology — Internet of media thingsPart 6: IoMT Media data formats and API for distributed AI processing
Cities are the future of human organization, with over two-thirds of the global population expected to live in urban areas by 2030. This raises significant challenges, including the allocation of resources to growing populations and the management of their consumption and waste. Smart cities are rising to address these challenges by integrating smart technologies to address citizens’ needs more safely, sustainably, and efficiently, from goods and services to transport and logistics management. The World Economic Forum predicts that the technological tipping point for smart cities – that is, when they move from being novel entities to representing the norm – could occur as early as 2026.[13]
‘Smart’ can mean different things to different people. In ISO, a ‘smart city’ is considered to be one with “effective integration of physical, digital and human systems in the built environment to deliver a sustainable, prosperous and inclusive future for its citizens” (ISO/IEC 30182:2017, 2.14). Another helpful way to understand it is to look at smart as having three pillars: digital, physical, and economic. Digitally smart refers to the effective deployment of digital and communication technologies for city management. Physically smart refers to the adjustment and construction of sustainable infrastructures and processes that enhance the city’s resilience and the residents’ quality of life. Finally, economically smart refers to the effective collaboration between citizens and local businesses to share assets and resources to build a resilient community.[14] The evolution of smart cities is closely linked to innovation in ‘Internet of Things’, ‘5G‘ and DARQ technologies, ‘Distributed ledger‘, ‘Artificial intelligence’, ‘Extended reality’, ‘Quantum computing’, which are essential in supporting the deployment of smart cities around the globe.[3]
Smart cities can both improve the living conditions of residents and support more sustainable living arrangements. They do this by integrating smart grids (see ‘Energy’), energy-saving construction materials and buildings, efficient digital management systems for waste and other logistical needs and services to citizens.[8] This results in a more efficient use of resources and resilient, better-connected systems. However, with this increased connectivity also brings risks related to privacy and big-data sharing. Because a smart city depends on a highly interdependent connected network, this increases the risk that a security breach, hacking or technical issue such as a power cut could affect the entire system, with repercussions in all sectors.[15,16] There is also a concern about the ‘Big Brother’ dilemma – for smart technology to efficiently relay information and adapt systems to residents’ needs, big data must be collected using things like cameras, sensors, and IoT tools.[17]
To maintain citizens’ trust in the smart city concept, effective policies and regulations will be needed to protect residents’ privacy and personal information. Standardization plays an important role towards bringing trust amongst citizens, thanks to transparency and open processes, which is key for citizens acceptance and confidence.
Related trends
News stories
- Infrastructures urbaines intelligentes – Réduction des risques de catastrophes – Résultats d'enquête et analyse des écarts
- ISO/CD 37100 [Actuellement en cours d'élaboration]Villes et communautés territoriales durables — Vocabulaire
- Villes et communautés territoriales durables — Lignes directrices pour l’établissement de stratégies pour les villes intelligentes et les collectivités
- Villes et communautés territoriales durables — Exigences et recommandations en matière de gestion des données ouvertes pour les villes et communautés territoriales intelligentes — Vue d'ensemble et principes généraux
- Villes et communautés territoriales durables — Études de cas sur la façon dont les modèles d'exploitation des villes intelligentes soutiennent une réponse d'urgence efficace en matière de santé publique
- Villes et communautés territoriales durables — Recommandations pour la gestion d'une réponse d'urgence en matière de santé publique dans les modèles d'exploitation des villes intelligentes
- ISO/FDIS 37114 [Actuellement en cours d'élaboration]Sustainable cities and communities — Appraisal framework for datasets and data processing methods that create urban management information
- ISO/WD TR 37115 [Actuellement en cours d'élaboration]Sustainable cities and communities — Use Cases on Net Zero Carbon Cities Pathways
- ISO/CD 37116 [Actuellement en cours d'élaboration]Sustainable cities and communities — Disaster risk finance — Principles and general requirements for financing ex-ante investment in risk reduction
- Villes et communautés territoriales durables — Indicateurs pour les villes intelligentes
- Villes et communautés territoriales durables — Indicateurs de performance pour les villes résilientes
- Sustainable cities and communities — Environmental, social and governance (ESG) indicators for cities
- Infrastructures communautaires intelligentes — Modèle de maturité pour l’évaluation et l’amélioration
- Infrastructures urbaines intelligentes — Transport intelligent pour les territoires en développement
- Infrastructures urbaines intelligentes — Cadre d'intégration des données urbaines pour la planification des villes intelligentes
- Infrastructures urbaines intelligentes — Recommandations relatives au transport intelligent par véhicules électriques, connectés et autonomes et application aux services de transport de passagers à la demande avec des véhicules partagés
- Infrastructures urbaines intelligentes — Cadre de données pour la gouvernance des infrastructures fondée sur la technologie numérique dans les villes intelligentes
- Infrastructures territoriales intelligentes — Échange et partage de données pour les infrastructures territoriales basés sur l'information géographique
- Infrastructures urbaines intelligentes — Lignes directrices pour le développement du système d'information des bâtiments intelligents
- Infrastructures urbaines intelligentes — Evaluation de la conformité et modèle de maturité
- Infrastructures urbaines intelligentes — Échange et partage des données pour le réseau d'éclairage public des communautés territoriales intelligentes
- Infrastructures urbaines intelligentes — Réduction du risque de catastrophe — Cadre général pour la mise en œuvre
- Infrastructures urbaines intelligentes — Transport intelligent par véhicules autonomes sur la voie publique
- Infrastructures urbaines intelligentes — Transport intelligent pour l'efficacité énergétique et la réduction des émissions polluantes dans les services de transport par autobus
- ISO/CD 37187 [Actuellement en cours d'élaboration]Smart community infrastructures — Guidelines on data exchange and sharing of city information modelling platform
- ISO/CD 37194 [Actuellement en cours d'élaboration]Smart community infrastructures — Disaster risk reduction — Guidance for the process of selecting seismometer systems suitable for specific purposes
- IEC/AWI 63205 [Actuellement en cours d'élaboration]Smart Cities Reference Architecture (SCRA)
- Technologies de l'information — Infographie, traitement d'images et représentation de données environnementales — Lignes directrices relatives à la représentation et à la visualisation des villes intelligentes
- ISO/IEC CD TR 25005-2 [Actuellement en cours d'élaboration]Information technology — Data use in smart citiesPart 2: Use case analysis and common considerations
- Villes intelligentes — Recommandations pour l'établissement d'un cadre décisionnel pour le partage des données et des services d'information
- ISO/IEC AWI TR 20169 [Actuellement en cours d'élaboration]Information technology — Overview of information technology standards for smart cities
- ISO/IEC CD 20538 [Actuellement en cours d'élaboration]Human Information Data Model for 3D Virtual Smart Cities
- Information technology — Smart city digital platform reference architecture — Data and service
- Modèle de concept de ville intelligente — Lignes directrices pour établir un modèle d'interopérabilité des données
- Développement durable dans les bâtiments et ouvrages de génie civil — Indicateurs et référentiels — Principes, exigences et lignes directrices
- Systèmes de transport intelligents - Services STI écologiques basés sur l'énergie pour les applications de mobilité des villes intelligentes via des dispositifs nomades et mobilesPartie 1: Informations générales et définitions des cas d'utilisation
- ISO/AWI TS 17748-2 [Actuellement en cours d'élaboration]Systèmes de transport intelligents - Services STI écologiques basés sur l'énergie pour les applications de mobilité des villes intelligentes via des dispositifs nomades et mobilesPartie 2: Exigences fonctionnelles de la plate-forme de données
- ISO/CD 17748-3.2 [Actuellement en cours d'élaboration]Systèmes de transport intelligents - Services STI écologiques basés sur l'énergie pour les applications de mobilité des villes intelligentes via des dispositifs nomades et mobilesPartie 3: Exigences en matière d'échange de données pour les services de recharge à la demande des véhicules électriques (VE)
- Modèle d'informations des réseaux électriques intelligents des installations
ISO/TMBG/JSCTF-TF 19 ISO, IEC and ITU Joint Smart Cities Task Force
References
- Global trends. Paradox of progress (US National Intelligence Council, 2017)
- Foresight Africa. Top priorities for the continent 2020-2030 (Brookings Institution, 2020)
- Technology vision 2020. We, the post-digital people (Accenture, 2020)
- Digital economy report 2019. Value creation and capture: implications for developing countries (UN Conference on Trade and Development, 2019)
- Global Trends and the future of Latin America. Why and how Latin America should think about the future (Inter-American Development Bank, Inter-American Dialogue, 2016)
- Global risks 2035 update. Decline or new renaissance? (Atlantic Council, 2019)
- 20 New technology trends we will see in the 2020s (BBC Science Focus Magazine, 2020)
- AGCS trend compass (Allianz, 2019)
- Global connectivity outlook to 2030 (World Bank, 2019)
- What are the levels of automated driving? (Aptiv, 2020)
- Future possibilities report 2020 (UAE Government, 2020)
- Global strategic trends. The future starts today (UK Ministry of Defence, 2018)
- Global trends to 2030. Challenges and choices for Europe (European Strategy and Policy Analysis System, 2019)
- Technology outlook 2030. Technology & society (Det Norske Veritas, 2021)
- Beyond the noise. The megatrends of tomorrow's world (Deloitte, 2017)
- Emerging technologies and smart cities (Forbes, 2021)
- Digital megatrends. A perspective on the coming decade of digital disruption (Commonwealth Scientific and Industrial Research Organisation, 2019)